HIGH FEED TURNING

-

IJ

HIGH FEED TURNING

Contents

Why High-Feed Turning?

- Cost reduction solution through productivity improvement
- ISO turning vs. High-feed turning

What is High-Feed Turning?

- High-feed turning principle
- Chip thickness comparison by feed-rate
- TaeguTec high-feed turning line

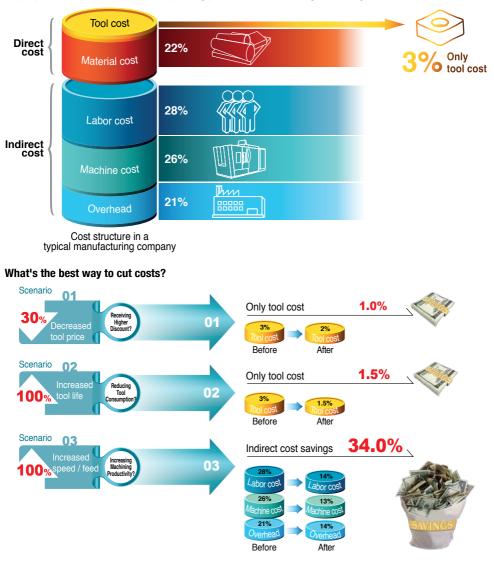
High-Feed Turning Lines

- WINTURN
- POSSTURN
- TURNSFEED

"How" Applications

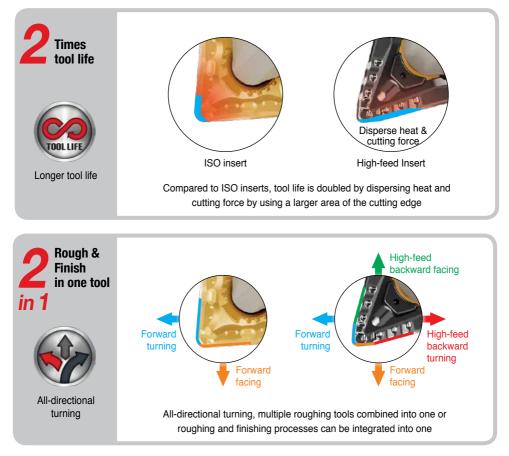
- Various applications
- Examples
- Recommended program method

Case Studies

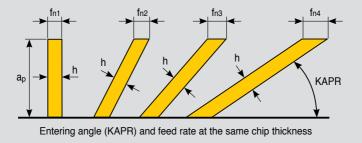

Insert Choice

- Insert selection by workpiece material

Cost reduction solution through productivity improvement


Productivity improvement by reducing machining time

In the recent manufacturing industry, reducing production costs has become a top priority for companies' profitability due to the increasing costs of raw materials and labor. One effective way to reduce production costs is to improve productivity by reducing machining time. While the tool cost represents only about 3% of the overall production cost structure for machining, reducing overhead costs through productivity improvement can be the most effective approach. With the use of TaeguTec high-feed turning products, we propose an optimal solution for improving productivity by reducing machining time.

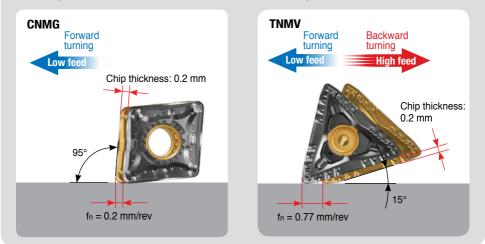

ISO turning Vs. High-feed turning

High-feed turning principle

This insert harnesses the principle of reducing the entering angle, while keeping the same chip thickness, allows a higher feed rate.

* fn = h/sin (KAPR)

- fn: Feed rate
- h: Chip thickness
- KAPR: Lead angle


- * Chip removal ratio = fn x ap x v
- ap: Depth of cut
- v: Cutting speed

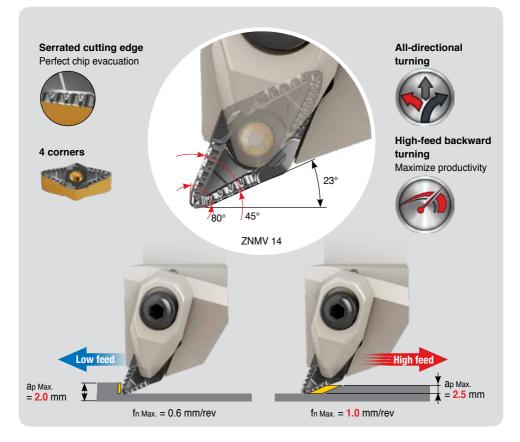
TaeguTec high-feed turning line

Product lines Cutting conditions	WINTURN	TNMV 21-BM		ZNMV 14-BM
Processing direction	0			•
fn Max. (mm/rev)	1.2	0.6	1.0	0.6
ap Max. (mm)	2.0	3.5	2.5	2.0
KAPR (°)	15	95	23	95

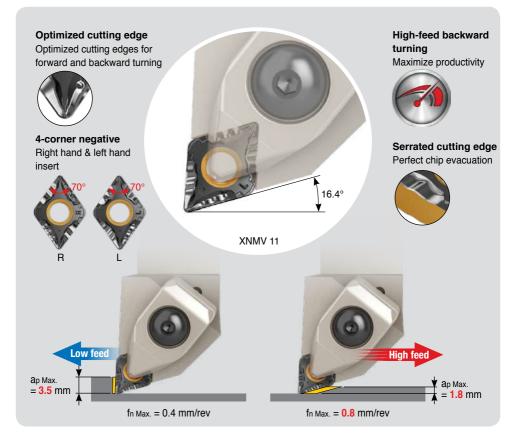
Chip thickness comparison by feed-rate

The figure below illustrates that a high-feed tool with a smaller entering angle requires less feed to achieve the same chip thickness as conventional ISO inserts. This can significantly increase machining efficiency and result in a drastic reduction in machining time.

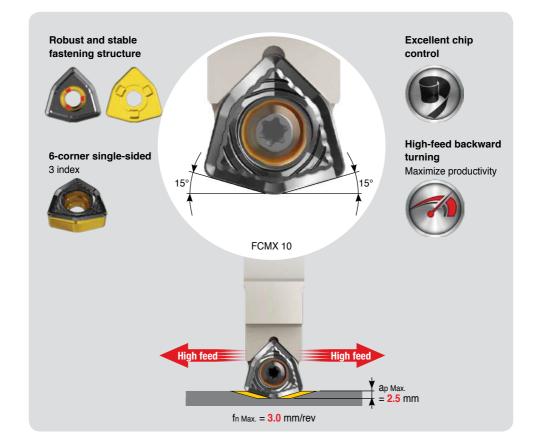
		Low feed High feed
POSSTUR	XNMV 11-BM	FCMX 10-HFG
0		
0.8	0.4	3.0
1.8	3.5	2.0
16.4	93	15



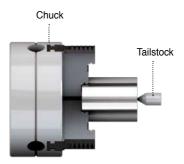
4 Cutting edges insert for all-directional & high-feed back turning



70° Corners insert for all-directional & high-feed back turning



High-feed turning for left and right bi-directional machining



Various applications

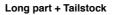
Short parts

Short part + Tailstock

Examples

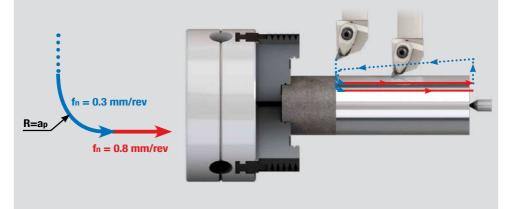
Bearing hub

Input flange



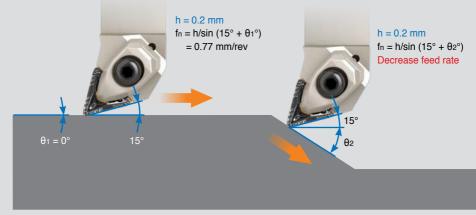

Tripod joint

Ball joint



Recommended program method

Radial entry tool path

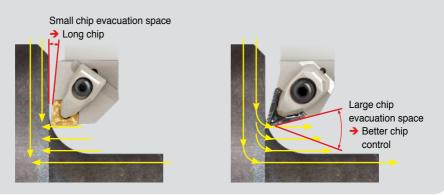

When using a circular interpolation tool path with a radius of 0.3 mm/rev feed rate, it is recommended to increase the feed rate for backward high-feed turning. It is important to note that the circular interpolation tool path radius should be equal to the depth of cut at a feed rate of 0.3 mm/rev. This is because circular interpolation helps prevent sudden load changes, insert chipping, and tool damage. Additionally, maintaining a constant cutting depth ensures better chip control during the turning process.

Profile machining

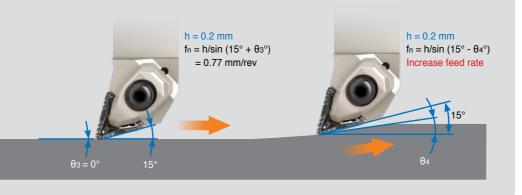
Lower the feed rate when the lead angle increases, higher the feed rate when the lead angle decreases

- When machining a profile, the chip thickness and lead angle both change depending on the direction.
- If machining with the same feed, the chip thickness and the cutting load increases as the lead angle

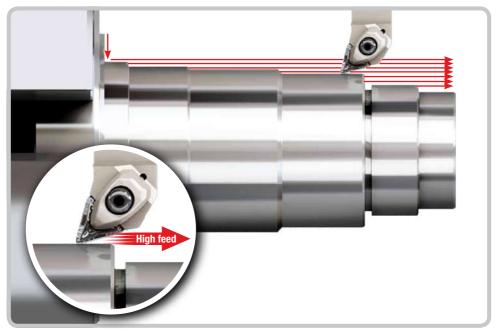


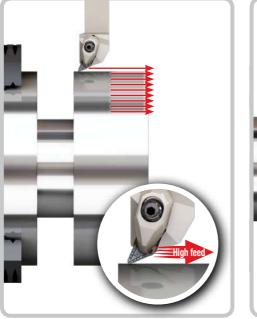

- fn: Feed rate / ap: Depth of cut / h: Chip thickness

Machining corner parts of forged products


3-4 passes of "Circular interpolation" + "Backward high-feed turning"

 Forged products often have additional mill scales on the corners that require extra tool passes to remove. However, traditional programming techniques may have limited chip evacuation space, resulting in the formation of long chips. To prevent poor surface roughness and machine downtime caused by long chips, backward high-feed turning is recommended as it creates sufficient chip evacuation space.



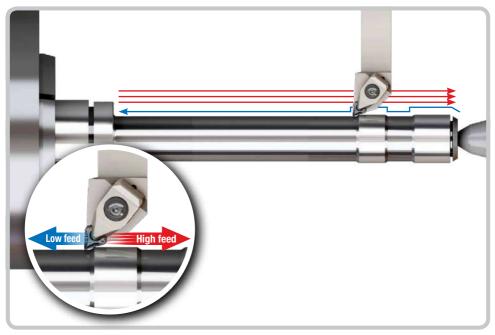

increases or the chip thickness decreases, making it difficult to control chipping as the lead angle decreases. Changing the feed to have the same chip thickness as the lead angle changes can prevent rapid cutting load changes and keep chip control constant.

High-feed backward turning roughing

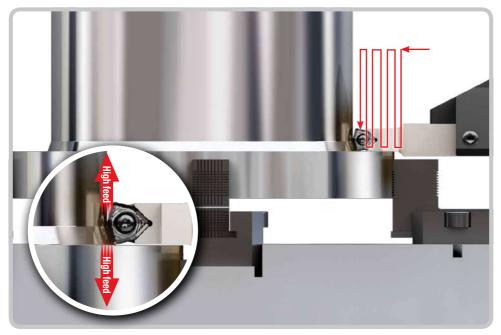
			_	_
Competitor		12		530 seconds
TaeguTec	Mm TNMV 2		300 seconds	75% Productivity increase
	Cycle time			
	Cycle time		Competitor	TaeguTec Solo Torn
	Cycle time		Competitor CNMG 12 (ISO type)	TaeguTec Town TNMV 210908-BM TT8125B
	Insert	V (m/min)	CNMG 12 (ISO type)	TNMV 210908-BM TT8125B
	Insert Holder	V (m/min) fn (mm/rev)	CNMG 12 (ISO type) TCLNL 3232 P12	TNMV 210908-BM TT8125B TTQNL 2525 M2109
	Insert Holder Speed	, ,	CNMG 12 (ISO type) TCLNL 3232 P12 210	TNMV 210908-BM TT8125B TTQNL 2525 M2109 210

High-feed backward turning roughing

Forward turning finishing



Competitor	CNMG ⁻	16		150 seconds
TaeguTec	POSS ZNMV 1	77URN 14	100 seconds	50% Productivity increase
	Cycle time			
	1 -			
			Competitor	TaeguTec <i>Rossturn</i>
	Insert		Competitor CNMG 16 (ISO type)	TaeguTec ROSSTURN ZNMV 141008-BS TT3020
	Insert Holder		-	
		V (m/min)	CNMG 16 (ISO type)	ZNMV 141008-BS TT3020
	Holder	V (m/min) fn (mm/rev)	CNMG 16 (ISO type) TCLNL 2525 M16	ZNMV 141008-BS TT3020 TZQNR 2525 M1410
	Holder Speed	, ,	CNMG 16 (ISO type) TCLNL 2525 M16 35	ZNMV 141008-BS TT3020 TZQNR 2525 M1410 35


Case Studies

High-feed backward turning roughing / forward turning finishing

Competitor	DNMG ⁻	15		7 minutes
TaeguTec	<i>POS</i> XNMV ⁻	<i>TTURN</i> 11	5 minutes	40% Productivity increase
	Cycle time			
			Competitor	TaeguTec POSSTURN
	Insert		Competitor DNMG 15 (ISO type)	TaeguTec POSSTURN XNMV 110508R-BM TT8115B
			•	
	Insert	V (m/min)	DNMG 15 (ISO type)	XNMV 110508R-BM TT8115B
	Insert Holder	V (m/min) fn (mm/rev)	DNMG 15 (ISO type) TDJNR 2525 M10 150	XNMV 110508R-BM TT8115B TXJNR 2525 M1105
	Insert Holder Speed	. ,	DNMG 15 (ISO type) TDJNR 2525 M10 150	XNMV 110508R-BM TT8115B TXJNR 2525 M1105 180

High-feed bi-directional roughing

Competitor	CNMG ⁻	19			28 seconds
TaeguTec	TURA FCMX 1	V <i>Sfeed</i> 10	22 :	seconds	27% Productivity increase
	Cycle time				
			Competitor	TaeguTec	TURNSFEED
	Insert		Competitor CNMG 19 (ISO type)	-	TURNSFEED 00616 HFG TT8125B
	Insert Holder		•	FCMX 10	2014 7210 788886
		V (m/min)	CNMG 19 (ISO type)	FCMX 10	00616 HFG TT8125B
	Holder	V (m/min) fn (mm/rev)	CNMG 19 (ISO type) C6-PCLNR (Capto)	FCMX 10	00616 HFG TT8125B 5 P1006 / C6 ASHR 25-1
	Holder Speed	, ,	CNMG 19 (ISO type) C6-PCLNR (Capto) 200	FCMX 10	00616 HFG TT8125B 5 P1006 / C6 ASHR 25-1 200

Insert selection by workpiece material

ISO	TINM TORN	POSSTURN ZNMV 14	POSSTURN XNMV 11	TURNSFEED FCMX 10
P	BM 1 st TT8125B 2 nd TT8115B	BM 1 st TT8125B 2 nd TT8115B	BM 1 st TT8125B 2 nd TT8115B	HFG 1 st TT8125B 2 nd TT8115B
)		Y-BF 1 st TT8125B 2 nd TT8115B		
	BS 1 st TT9225 2 nd TT9080			HFP TT9225
S		BS 1 st TT3020 2 nd TT3010	BS 1 st TT3020 2 nd TT3010	

20115
E G U T E

EGUTE

26115
FGUTE

Your Knowledge Machining Link!

• Cat.No: 6257512

- English Version: CT 03/2023
- ©TaeguTec LTD.